Stage 3 Resource for assessing strategies: Addition and Subtraction

Rubric for identifying counting and addition/subtraction strategies

Observe students during activity, tally or tick in the strategy box as you see it being used.

Class name:	Observer:		Date:
Counts on using ones Student counts on by ones for numbers of any size (including two-digit numbers) will use fingers or draw fence posts	Bridging to the decade Students bridge to ten by breaking up the second number e.g. 17 + 5; 17 and 3 is 20 then add two more makes 22	Friends of and to ten Students combine numbers that add to 10 e.g. 4 + 7 + 8 + 6 + 3 + 1; group 4 and 6, 7 and 3 first This can include friends of 6, 7, 8 and 9 as well.	Using doubles Students use known facts like doubles and near doubles e.g. 5 + 6; double 5 then add one more
Counting on Students count on from the larger number to find the total of two numbers e.g. 14 + 7, "I started with 14 and then count on seven more" 14, 15, 16, 17, 18, 19, 20, 21	Counting back Students count back from a number to find the number remaining e.g. 17 = 14 "I started with 17 then counted back 16, 15, 14 and I got 3"	Using number facts Students use related addition and subtraction number facts to at least 20 e.g. 15 + 3 =18; so 18 - 15 = 3 these are called 'Turn Around Facts'	Jump strategy Students place the first number on an empty number line and then counts forward or backwards firstly by tens and then by ones to perform a calculation +10 $+10$ $+10$ $+1$ $+1$ $+146$ 56 66 76 77 78 79
Split Strategy	Compensation strategy	Using patterns to extend number facts	Bridging the decades
from the units and add or subtract each separately before combining to obtain the final answer e.g. $46 + 33$ = 40 + 6 + 30 + 3 = 40 + 30 + 6 + 3 = 70 + 9	that is close to the decade to make the calculation simpler. e.g. 63 + 29; 63 + 30 is 93, subtract 1, to obtain 92	between calculations of smaller and larger numbers, using an easier sum as a starting place for finding a solution. e.g. 5 – 2 = 3, so 500 – 200 is 300	a split strategy is similar to using a split strategy, instead of splitting both numbers, students keep one number whole and bridge to the decade first. e.g. 34 + 26; 34 + 6 = 40, 40 + 20 = 60
= 79			It is a reversal of jump but is only used when the 'ones' add to a ten
Forming multiples	Formal algorithm	Partitioning numbers	Inverse operations
Student change the order of addends (numbers) to form multiples of ten or other decades. e.g. 16 + 8 + 4; add 16 and 4 first	Students use a formal algorithm to record their calculations. e.g. 134 + 568	Students can expand numbers into standard and non- standard forms to make addition or subtraction easier. e.g. 500 + 670: 670= 500 + 170, so 500 + 670= 500+ 500 (or 2 x 500) = 1000+ 170= 1170	Students check solutions by using inverse operations. e.g. 50- 27= 23, so, 23+ 27 = 50
a			

Stage 3 Resource for assessing strategies: Multiplication and Division

Rubric for identifying multiplication and division strategies

Observe students during activity, tally or tick in the strategy box as you see it being used.

Class name:	Observer:		Date:
Model equal groups	Perceptual counting and sharing	Rhythmic counting	Skip counting
'two groups of three'	Uses visual markers to represent items and groups	1, 2, 3 , 4, 5, 6 , 7, 8, 9	3, 6, 9, 12 May need visible items
Forms arrays of equal rows	Figurative- multiple count	Uses repeated addition for multiplication	Uses repeated subtraction for division
	Uses visual markers to	5 groups of 4 is the same as	25 ÷ 5 =
	represent groups	4+4+4+4	25- 5= 20 (one)
$\bullet \bullet \bullet \bullet \bullet$		Or	-5 = 15 (two)
		Ear 3 v 1	-5 = 10 (three)
	1 - 2 - 3 3 x 5 = 15	3 + 3 + 6 + 3 + 3 + 3 + 3 + 3 + 3 + 3 +	-5 = 0 (five)
			3-0(110)
Uses a double count to	Uses doubling and repeated	Uses halving and repeated	Uses inverse operations
coordinate composite units	doubling	halving for 2, 4 and 8	
Counts by the number in each	7 x 8 is double 7 (14), double	36÷ 4:halve 36 (gives 18) then	25 ÷ 5 is the same as 5 x ? = 25
group while counting the number of groups e.g. "How many three in 18?" 3 is 1, 6 is 2 9 is 318 is 6	again (28) then double again (56)	halve again (equals 9)	so the answer is 5
Uses known facts to work out	Uses relationships between	Uses place value concepts	Factorises the multiple of 10
unknown	facts		
5 x 7 = 35 so 6 x 7 is 7 more	Multiples for 6 are double the	3 x 20 is the same as 3 x 2 tens	3 x 20 is the same as
than 35	facts for 3	= 6 tens= 60	3 x 2 x 10= 6 x 10= 60
Model commutative property	Multiplying the tens then the units	Model and apply associative property	Factorising the larger number
3 groups of 2 is the same as 2 groups of 3	7 x 19 is the same as 7 tens plus 7 nines is 70+ 63= 133	2 x 3 x 5= 2 x 5 x 3= 10 x 3= 30	18 x 5= 9 x 2 x 5= 9 x 10= 90
Uses an area model	Uses a formal algorithm	Uses extended form (long	Uses estimation
	(Stage 3 M&D 1)	multiplication) (Stage 3 M&D 1)	(Stage 3 M&D 1)
Solving 27 x 8	432 ×	521×	32 x 253 will be about, but
	$\frac{3}{2160}$	$\frac{22}{1042}$	more than 30 x 250
8 160 56		10420	
		11462	
160+56=216			
Recognises grouping symbols	Applies order of operations		
(Stage 3 M&U 2) $\Gamma + (2 \times 2) = \Gamma + 6 = 11$	(Stage 3 IVI (U Z))		
5 + (2 x 5) - 5 + 0 - 11	$32 \div (2 \times 4) - 32 \div 6 - 4$		