Stage 3 Resource for assessing strategies: Addition and Subtraction

Rubric for identifying counting and addition/subtraction strategies

Observe students during activity, tally or tick in the strategy box as you see it being used.
Class name:
Observer:
Date:

Counts on using ones	Bridging to the decade	Friends of and to ten	Using doubles
Student counts on by ones for numbers of any size (including two-digit numbers) will use fingers or draw fence posts	Students bridge to ten by breaking up the second number e.g. $17+5 ; 17$ and 3 is 20 then add two more makes 22	Students combine numbers that add to 10 e.g. $4+7+8+6+3+1$; group 4 and 6, 7 and 3 first This can include friends of 6 , 7,8 and 9 as well.	Students use known facts like doubles and near doubles e.g. $5+6$; double 5 then add one more
Counting on	Counting back	Using number facts	Jump strategy
Students count on from the larger number to find the total of two numbers e.g. $14+7$, "I started with 14 and then count on seven more" $\begin{aligned} & 14,15,16,17,18,19,20, \\ & 21 \end{aligned}$	Students count back from a number to find the number remaining e.g. 17 - \qquad = 14 " 1 started with 17 then counted back $16,15,14$ and I got $3^{\prime \prime}$	Students use related addition and subtraction number facts to at least 20 $\begin{array}{ll} \text { e.g. } & 15+3=18 ; \\ \text { so } & 18-15=3 \end{array}$ these are called 'Turn Around Facts'	Students place the first number on an empty number line and then counts forward or backwards firstly by tens and then by ones to perform a calculation
Split Strategy	Compensation strategy	Using patterns to extend number facts	Bridging the decades
Students separate the tens from the units and add or subtract each separately before combining to obtain the final answer $\text { e.g. } \begin{aligned} & 46+33 \\ & =40+6+30+3 \\ & =40+30+6+3 \\ & =70+9 \\ & =79 \end{aligned}$	Students 'round up' a number that is close to the decade to make the calculation simpler. $\text { e.g. } 63+29 ; 63+30 \text { is } 93,$ subtract 1, to obtain 92	Students see the similarity between calculations of smaller and larger numbers, using an easier sum as a starting place for finding a solution. $\begin{aligned} & \text { e.g. } 5-2=3 \text {, so } 500-200 \text { is } \\ & 300 \end{aligned}$	This strategy is similar to using a split strategy, instead of splitting both numbers, students keep one number whole and bridge to the decade first. $\begin{aligned} & \text { e.g. } 34+26 ; 34+6=40,40+ \\ & \quad 20=60 \end{aligned}$ It is a reversal of jump but is only used when the 'ones' add to a ten
Forming multiples	Formal algorithm	Partitioning numbers	Inverse operations
Student change the order of addends (numbers) to form multiples of ten or other decades. e.g. $16+8+4$; add 16 and 4 first	Students use a formal algorithm to record their calculations. e.g. $\begin{aligned} & 134+ \\ & 568 \end{aligned}$	Students can expand numbers into standard and nonstandard forms to make addition or subtraction easier. $\begin{aligned} & \text { e.g. } 500+670: 670=500+ \\ & 170, \text { so } 500+670=500+500 \\ & \text { (or } 2 \times 500 \text {) }=1000+170= \\ & 1170 \end{aligned}$	Students check solutions by using inverse operations. $\text { e.g. } 50-27=23 \text {, so, } 23+27=$ 50

Stage 3 Resource for assessing strategies: Multiplication and Division
Rubric for identifying multiplication and division strategies
Observe students during activity, tally or tick in the strategy box as you see it being used.
Class name:
Observer:
Date:

Model equal groups	Perceptual counting and sharing	Rhythmic counting	Skip counting
'two groups of three'	Uses visual markers to represent items and groups	$1,2,3,4,5,6,7,8,9 .$.	$3,6,9,12 \ldots$ May need visible items
Forms arrays of equal rows	Figurative- multiple count	Uses repeated addition for multiplication	Uses repeated subtraction for division
	Uses visual markers to represent groups $\begin{array}{\|ccc\|} \hline \begin{array}{\|c\|} \hline 5 \\ \hline \end{array} & \begin{array}{\|c\|} \hline 5 \\ 3 \end{array} & \begin{array}{\|c} 5 \\ \hline \end{array} \\ \hline \end{array}$	5 groups of 4 is the same as $4+4+4+4+4$ Or For 3×4 $3+3 \text { is } 6,6+3 \text { is } 9,9+3 \text { is } 12$	$\begin{aligned} & 25 \div 5= \\ & 25-5=20 \text { (one) } \\ & -5=15 \text { (two) } \\ & -5=10 \text { (three) } \\ & -5=5 \text { (four) } \\ & -5=0 \text { (five) } \end{aligned}$
Uses a double count to coordinate composite units	Uses doubling and repeated doubling	Uses halving and repeated halving for 2,4 and 8	Uses inverse operations
Counts by the number in each group while counting the number of groups e.g. "How many three in 18 ?" 3 is 1,6 is 2,9 is $3 \ldots 18$ is 6	7×8 is double 7 (14), double again (28) then double again (56)	$36 \div 4$:halve 36 (gives 18) then halve again (equals 9)	$25 \div 5$ is the same as $5 \times ?=25$ so the answer is 5
Uses known facts to work out unknown	Uses relationships between facts	Uses place value concepts	Factorises the multiple of 10
$5 \times 7=35$ so 6×7 is 7 more than 35	Multiples for 6 are double the facts for 3	3×20 is the same as 3×2 tens $=6$ tens $=60$	3×20 is the same as $3 \times 2 \times 10=6 \times 10=60$
Model commutative property	Multiplying the tens then the units	Model and apply associative property	Factorising the larger number
3 groups of 2 is the same as 2 groups of 3	7×19 is the same as 7 tens plus 7 nines is $70+63=$ 133	$2 \times 3 \times 5=2 \times 5 \times 3=10 \times 3=30$	$18 \times 5=9 \times 2 \times 5=9 \times 10=90$
Uses an area model	Uses a formal algorithm (Stage 3 M\&D 1)	Uses extended form (long multiplication) (Stage 3 M\&D 1)	Uses estimation (Stage 3 M\&D 1)
	$\begin{array}{r} 432 x \\ 5 \\ \hline 2160 \\ \hline \end{array}$	$\begin{array}{r} 521 \mathrm{x} \\ 222 \\ \hline 10420 \\ \hline 11462 \\ \hline \end{array}$	32×253 will be about, but more than 30×250
Recognises grouping symbols (Stage 3 M\&D 2)	Applies order of operations (Stage 3 M\&D 2)		
$5+(2 \times 3)=5+6=11$	$32 \div(2 \times 4)=32 \div 8=4$ (grouping symbols first)		

